作者 | 金捷幡
责编 | 胡巍巍
航空发动机一直被誉为人类顶尖工业皇冠上的明珠。但最近十年,不断挑战物理学极限的半导体光刻机,大有挑战明珠之王的趋势。
航发是在极端高温高压下挑战材料和能量密度的极限,而光刻是在比头发丝还细千倍的地方挑战激光波长和量子隧穿的极限。
更难得的是,和低可靠性的航天高科技不同,航发和光刻的可靠性也是人类骄傲之花:前者保证了每天十万架飞机在天空安全翱翔,后者在全球工厂每秒钟刻出上千亿个晶体管分毫不差。
震撼一下,看看芯片内部 Credit: ASML,注:1nm=0.000000001米
1.引子
2000年,成立15年当时排名世界第二的荷兰ASML(阿斯麦)公司已经成功占领韩国和台湾市场,但还在琢磨怎么卖光刻机给那时芯片的绝对霸主英特尔(Intel)。
缺乏新一代157nm激光需要配置的反折射镜头技术也是让ASML焦虑的地方。同时,在美国能源部和几大芯片巨头合建的EUV光刻联盟里,ASML还只是个小配角。
这时下一代光刻技术发展会怎样,整个半导体届没有人知道。
在转折关头,ASML决定另辟蹊径,报价16亿美元收购市值只有10亿的硅谷集团(SVG)。
曾经辉煌的SVG当时在光刻机的市场份额只有不到8%,年营业额只有2.7亿美元,而且193nm产品水平还远不如ASML。所以华尔街认为ASML买贵了,ASML股价当天暴跌7.5%。
然而从后来的结果看,ASML等于花钱买了光刻机行业最值钱的门票:英特尔的vendor code,同时摇晃了尼康(Nikon)的支柱。
此外,SVG拥有最成熟的157nm光学技术,等于ASML买了一个技术双保险,这点后面会再详述。
不过,别以为西方人都是一家子。这次收购仍遭到美国政府和商会的阻挠,美国国防部审查说ASML董事长在一个曾经违反禁令偷偷卖夜视镜给伊拉克的荷兰公司当过董事。
中国公司的老对手美国外国投资委员会最终在收购协议上加了一堆条件,其中包括不许收购SVG负责打磨镜片的子公司Tinsley,以及保证各种技术和人才留在美国。
这些条件反而让ASML顺理成章地成为了半个美国公司,享受到美国强劲的基础科学带来的巨大好处,为多年后在EUV一支独秀做了有力的铺垫。
2.早期,60-70年代
光刻机的原理其实像幻灯机一样简单,就是把光通过带电路图的掩膜(Mask,后来也叫光罩)投影到涂有光敏胶的晶圆上。
早期60年代的光刻,掩膜版是1:1尺寸紧贴在晶圆片上,而那时晶圆也只有1英寸大小。
因此,光刻那时并不是高科技,半导体公司通常自己设计工装和工具,比如英特尔开始是买16毫米摄像机镜头拆了用。
只有GCA、K&S和Kasper等很少几家公司有做过一点点相关设备。
60年代末,日本的尼康和佳能开始进入这个领域,毕竟当时的光刻不比照相机复杂。
70年代初,光刻机技术更多集中在如何保证十个甚至更多个掩膜版精准地套刻在一起。
Kasper仪器公司首先推出了接触式对齐机台并领先了几年,Cobilt公司做出了自动生产线,但接触式机台后来被接近式机台所淘汰,因为掩膜和光刻胶多次碰到一起太容易污染了。
1973年,拿到美国军方投资的Perkin Elmer公司推出了投影式光刻系统,搭配正性光刻胶非常好用而且良率颇高,因此迅速占领了市场。
1978年,GCA推出真正现代意义的自动化步进式光刻机(Stepper),分辨率比投影式高5倍达到1微米。
这个怪怪的名字来自于照相术语Step and Repeat,这台机器通俗点说把透过掩膜的大约一平方厘米的一束光照在晶圆上,曝光完一块挪个位置再刻下一块。
由于刚开始Stepper生产效率相对不高,Perkin Elmer在后面很长一段时间仍处于主导地位。
3.80年代,群雄争霸
光刻机是个小市场,一年卖几十台的就算大厂了。因为半导体厂商就那么多,一台机器又能用好多年。这导致你的机器落后一点,就没人愿意买了。技术领先是夺取市场的关键,赢家通吃。
80年代一开始,GCA的Stepper还稍微领先,但很快尼康发售了自己首台商用Stepper NSR-1010G,拥有更先进的光学系统极大提高了产能。两家一起挤压了其它厂商的份额,尤其是Perkin Elmer的投影式光刻。P&E的市场份额从80年超过3成快速跌到84年不到5%。
看过我写的《内存的故事》的朋友都知道,80年代是日本半导体最风光的时候,本土几乎每家大公司大财阀都进入了半导体业。这给尼康和佳能双雄带来巨大的后盾,并开始反攻美国市场。
由于GCA的镜片组来自蔡司,不像尼康自己拥有镜头技术,合作的问题使得GCA产品更新方面一直落后了半拍。1982年,尼康在硅谷设立尼康精机,开始从GCA手里夺下一个接一个大客户:IBM、Intel、TI、AMD等。
到了1984年,尼康已经和GCA平起平坐,各享三成市占率。Ultratech占约一成,Eaton、P&E、佳能、日立等剩下几家每家都不到5%。
为什么我们要特地看1984年呢?
首先我们致敬一下苹果,震撼世界的广告《1984》发布了第一代Mac(我现在打字电脑的老祖宗)。然后,请出我们故事的主角:ASML。
ASML被广为传播成是飞利浦分离的出来的,虽然不能说不对,但是和大家想象的那样子还是不同的。
飞利浦在实验室里研发出stepper的原型,但是不够成熟。因为光刻市场太小,飞利浦也不能确认它是否有商业价值,去美国和P&E、GCA、Cobilt、IBM等谈了一圈没人愿意合作。
有家荷兰小公司叫ASM International的老板Arthur Del Prado听说了有这么回事,主动要求合作。但这家代理出身的公司只有半导体前后道的经验,对光刻其实不太懂,等于算半个天使投资加半个分销商。
飞利浦犹豫了一年时间,最后勉强同意了设立50:50的合资公司。1984年4月1日ASML成立的时候,只有31名员工,在飞利浦大厦外面的木板简易房里工作。
ASML在头一年只卖出一台stepper,第二年卖出四台。第一代产品不够成熟,但是背靠飞利浦大树的各种资源和容忍让它生存了下来。
ASML在1985年和蔡司(Zeiss)合作改进光学系统,终于在1986年推出非常棒的第二代产品PAS-2500,并第一次卖到美国给当时的创业公司Cypress,今天的Nor Flash巨头。
有意思的是,1986年半导体市场大滑坡(比如光三星半导体就亏了3亿美元),导致美国一帮光刻机厂商都碰到严重的财务问题。ASML还小,所以损失不大,还可以按既有计划开发新产品。同期,GCA和P&E的新产品开发都停滞了下来。
1988年GCA资金严重匮乏被General Signal收购,又过了几年GCA找不到买主被关闭。General Signal旗下另外一家Ultratech最终被MBO,但是规模也不大了。1990年,P&E光刻部也支撑不下去被卖给SVG。
1980年还占据大半壁江山的美国三雄,到80年代末地位完全被日本双雄取代。这时ASML还只有大约10%的市场占有率。
4.波长的竞争
忽略掉美国被边缘化的SVG、Ultratech等公司,90年代一直到现在的格局,一直是ASML和尼康的竞争,佳能在旁边看热闹。
所以我们要开始讲一点点技术了。
半导体领域的原生驱动力是摩尔定律。摩尔定律其实应该被叫做摩尔预言,这个预言中间还改过一次。
戈登·摩尔博士1965年最早的预言是集成电路密度每年翻倍,而1975年他自己改成每两年翻倍。
有人说,这是人类历史上最伟大的“自我实现的预言”,因为英特尔就是照着这个预言一路狂奔数十年,直到光刻技术被卡在193nm上十多年变成网友说的“牙膏厂”。
为了实现摩尔定律,光刻技术就需要每两年把曝光关键尺寸(CD)降低30%-50%。根据瑞利公式:CD=k1*(λ/NA),我们能做的就是降低波长λ,提高镜头的数值孔径NA,降低综合因素k1。
搞更短的波长是最直接的手段。90年代前半期,光刻开始使用波长350nm i-line,后半期开始使用248nm的KrF激光。
激光的可用波长就那么几个,00年代光刻开始使用193nm波长的DUV激光,这就是著名的ArF准分子激光,包括近视眼手术在内的多种应用都应用这种激光,相关激光发生器和光学镜片等都比较成熟。
但谁也没想到,光刻光源被卡在193nm无法进步长达20年。直到今天,我们用的所有手机电脑主芯片仍旧是193nm光源光刻出来的。
90年代末,科学家和产业界提出了各种超越193nm的方案,其中包括157nm F2激光,电子束投射(EPL),离子投射(IPL)、EUV(13.5nm)和X光,并形成了以下几大阵营:
157nm F2:每家都研究,但SVG和尼康离产品化最近。157nm光会被现有193nm机器用的镜片吸收,光刻胶也要重新研制,所以改造难度极大,而对193nm的波长进步只有不到25%,研发投入产出比太低。ASML收购SVG后获取了反射技术,2003年终于出品了157nm机器,但错过时间窗口完败于低成本的浸入式193nm。
13.5nm EUV LLC:英特尔,AMD,摩托罗拉和美国能源部。ASML、英飞凌和Micron后来加入。关于EUV,我放到后面在说吧。
1nm 接近式X光:日本阵营(ASET, Mitsubishi, NEC, Toshiba, NTT)和 IBM。这算是个浪漫阵营吧,大家就没想过产业化的事。
0.004nm EBDW或EPL: 朗讯Bell实验室,IBM,尼康。ASML和应用材料被邀请加入后又率先退出。这是尼康和ASML对决的选择,尼康试图直接跨越到未来技术击败ASML,但可惜这个决战应该发生在2020年而不是2005年,尼康没有选错技术但是选错了时间。尼康最重要的技术盟友IBM在2001年也分心加入了EUV联盟。
0.00005nm IPL: 英飞凌、欧盟。ASML和莱卡等公司也有参与。离子光刻从波长来看是最浪漫的,然而光刻分辨率不光由波长决定,还要看NA。人类现有科技可用离子光刻的光学系统NA是0.00001,比193nm的NA=0.5~1.5刚好差10万倍,优势被抵消了。
以上所有努力,几乎全部失败了。
它们败给了一个工程上最简单的解决办法,在晶圆光刻胶上方加1mm厚的水。水可以把193nm的光波长折射成134nm。
浸入式光刻成功翻越了157nm大关,直接做到半周期65nm。加上后来不断改进的高NA镜头、多光罩、FinFET、Pitch-split、波段灵敏的光刻胶等技术,浸入式193nm光刻机一直做到今天的7nm(苹果A12和华为麒麟980)。
2002年台积电的林本坚博士在一次研讨会上提出了浸入式193nm的方案,随后ASML在一年的时间内就开发出样机,充分证明了该方案的工程友好性。
随后,台积电也是第一家实现浸入式量产的公司,随后终于追上之前制程技术遥遥领先的英特尔,林博士因此获得了崇高的荣誉和各种奖项。
MIT的林肯实验室似乎不服气,他们认为自己在2001年就提出了这个浸入式方案。ASML似乎也没有在任何书面说明自己开发是受林博士启发。
其实油浸镜头改变折射率的方式由来已久,产业界争论是谁的想法在先从来不重要,行胜于言。林博士的贡献是台积电和ASML通力合作把想法变成了现实。
5.日荷争霸
在ASML推出浸入式193nm产品的前后脚,尼康也宣布自己的157nm产品以及EPL产品样机完成。然而,浸入式属于小改进大效果,产品成熟度非常高,所以几乎没有人去订尼康的新品。尼康被迫随后也宣布去做浸入式光刻机。
之前我们提到光刻领域是赢家通吃,新产品总是需要至少1-3年时间由前后道多家厂商通力磨合。别人比你早量产就比你多了时间去改善问题和提高良率。
光刻机就像印钞机,材料成本可以忽略不计,而时间就像金子一样珍贵。
半导体厂商更愿意去买成熟的ASML产品,不想去给尼康当白鼠。
这导致后面尼康的大溃败。尼康在2000年还是老大,但到了2009年ASML已经市占率近7成遥遥领先。尼康新产品的不成熟,也间接关联了大量使用其设备的日本半导体厂商的集体衰败。
佳能在光刻领域一直没争过老大。当年它的数码相机称霸世界利润很好,对一年销量只有百来台的光刻机重视不够。
佳能的思路是一款产品要卖很久,他们一看193nm尼康和ASML打得太厉害就直接撤了。直到现在佳能还在卖350nm和248nm的产品,给液晶面板以及模拟器件厂商供货。
尼康在浸入式一战败下来就彻底没有还手之力了,因为接下来EUV的开发需要投入巨资而且前景未卜,英特尔倒向ASML使得尼康失去了挑战摩尔定律的勇气。
6.EUV光刻机
7.国产光刻机的希望
以下内容来源:「国君电子王聪/张天闻」
1、光刻设备中国龙头,各方扶持蓄力发展
上海微电子是在国家科技部和上海市政府共同推动下,由国内多家企业集团和投资公司共同投资组建的高科技企业。公司成立于2002年,主要从事半导体装备、泛半导体装备以及高端智能装备的设计制造销售,其中光刻设备是公司的主营业务。公司在光刻设备领域拥有全国最先进的技术。目前公司光刻机可以应用于集成电路产业链中晶圆制造、封装测试,以及平板显示、高亮度 LED 等领域。
公司是大陆光刻设备龙头企业。目前公司所研发的高端前道光刻机实现90nm制程。在中端先进封装光刻机和LED光刻机领域,公司技术领先,在中国大陆市场份额已经超过80%。其先进封装光刻机率先实现量产并远销海外市场,获得多项大奖和技术认证广受业内认可。根据芯思想数据,上海微电子2018年出货大概在50-60台之间。
根据中国半导体协会,公司在半导体设备商中排名第5,是唯一上榜的专门研究销售光刻机的厂商。
公司具有强大的研发团队,自主创新能力不断提升。在国家的大力支持下,公司不断通过引进优秀的人才壮大核心团队以进一步提升公司的竞争力和产品研发效率。根据国投高新,上海微电子目前研发队伍不断壮大,其中包括拥有卓越才能的国家千人计划专家、上海市科技领军人才、上海市技术学科带头人等重量级专业人才。根据企查查数据,公司近年来专利发布数量呈增长态势,这也显示出上微自主创新能力不断提升。截至2018年12月,SMEE直接持有各类专利及专利申请超过2400项,同时公司通过建设并参与产业知识产权联盟,进一步整合共享了大量联盟成员知识产权资源,涉及光刻设备、激光应用、检测类、特殊应用类等各大产品技术领域,全面覆盖产品的主要销售地域,使得公司竞争实力不断提升。公司是国家重点扶持企业。上海微电子在国家02专项的支持下积极布局光刻机制造。
上海微电子积极为 IPO 做准备。根据证监会公布的《上海微电子装备(集团)股份有限公司辅导备案基本情况表》,公司已经在 2017 年 12 月27 日与中信建投证券股份有限公司签署辅导协议并进行辅导备案。
公司最大股东为上海电气,股本占比达到32.09%。上海市国资委是公司的实际控制人,其通过电气集团、上海科投、泰力投资等股东合计持有公司 53.49%的股权。公司拥有4家全资子公司以及一家参股子公司。
2、光刻机:高壁垒资本密集核心设备,市场广阔龙头集中
光刻机应用广泛,包括IC前道光刻机、用于封装的后道光刻机以及用于LED领域及面板领域的光刻机等等。封装光刻机对于光刻的精度要求低于前道光刻要求,面板光刻机与IC前道光刻机工艺相比技术精度也更低,一般为微米级。IC前道光刻机技术最为复杂,光刻工艺是IC 制造的核心环节,利用光刻技术可以将掩模版上的芯片电路图转移到硅片上。光刻机是一种投影曝光系统,包括光源、光学镜片、对准系统等。在制造过程中,通过投射光束,穿过掩膜板和光学镜片照射涂敷在基底上的光敏性光刻胶,经过显影后可以将电路图最终转移到硅晶圆上。
光刻机分为无掩模光刻机和有掩模光刻机。无掩模光刻机可分为电子束直写光刻机、离子束直写光刻机、激光直写光刻机。电子束直写光刻机可以用于高分辨率掩模版以及集成电路原型验证芯片等的制造,激光直写光刻机一般是用于小批量特定芯片的制造。有掩模光刻机分为接触/接近式光刻机和投影式光刻机。接触式光刻和接近式光刻机出现的时期较早,投影光刻机技术更加先进,图形比例不需要为1:1,减低了掩膜板制作成本,目前在先进制程中广泛使用。随着曝光光源的改进,光刻机工艺技术节点不断缩小。
目前最先进的光刻机来自ASML的EUV光刻机,采用13.5nm光源,最小可以实现7nm的制程。此设备的开发难度更高,使用条件更复杂目前只有ASML攻破此项技术。因为所有物质吸收EUV辐射,用于收集光(收集器),调节光束(照明器)和图案转移(投影光学器件)的光学器件必须使用高性能钼硅多层反射镜,并且必须容纳整个光学路径在近真空环境中,整个设备十分复杂。
芯片尺寸的缩小以及性能的提升依赖于光刻技术的发展。光刻设备光源波长的进一步缩小将推动先进制程的发展,进而降低芯片功耗以及缩小芯片的尺寸。根据International Society for Optics and Photonics以及VLSI Research研究发现,高精度EUV光刻机的使用将使die和wafer的成本进一步减小,但是设备本身成本也会增长。
目前光刻工艺是IC 制造中最关键也是最复杂步骤,光刻机是目前成本最高的半导体设备,光刻工艺也是制造中占用时间比最大的步骤。其约占晶圆生产线设备成本30%,占芯片制造时间40%-50%。以光刻机行业龙头ASML为例,其研发投入每年在10亿欧元左右,并且逐年增长。
高端EUV价格不断攀升。根据芯思想,2018年单台EUV平均售价1.04亿欧元,较2017年单台平均售价增长4%。而在2018年一季度和第四季的售价更是高达1.16亿欧元。
2.2.1. 光刻机市场龙头集中,中低端市场广阔竞争激烈
光刻机设备市场龙头集中,EUV光刻机被ASML垄断。全球光刻机出货量99%集中在ASML,尼康和佳能。其中ASML份额最高,达到67.3%,且垄断了高端EUV光刻机市场。ASML技术先进离不开高投入,其研发费用率始终维持在15%-20%,远高于Nikon和Canon。
ASML在高端EUV、ArFi、ArF机型市场占有率不断提升。2017年ASML上述三种机型出货量总计为101台,市场份额占比为78.29%,到2018年ASML出货量增长到120台,市场份额约90% 。2018年ASML共出货224台光刻机,较2017年198年增加26台,增长13.13%。Nikon2018年度(非财年)光刻机共出货106台,半导体用光刻机出货36台,同比增长33.33%,面板(FPD)用光刻机出货70台。2018年Canon光刻机出货183台,同比增1.6%。半导体用光刻机出货达114台,增长62.85%。但是主要是i-line、KrF两个低端机台出货,其面板(FPD)用光刻机出货69台。
IC前道光刻机国产化严重不足。目前国内光刻机处于技术领先的是上海微电子,其最先进的ArF光源光刻机节点为90nm,中国企业技术整体较为落后,在先进制程方面与国外厂商仍有较大差距。
Nikon 和 Canon 目前在高端市场技术与 ASML 相差甚远几乎完全退出市场,Canon 也退出了 ArF 光源光刻机研发与销售,将其业务重点集中于中低端光刻机市场,包括封装光刻机、LED 光刻机以及面板光刻机等,与复杂的 IC 前道制造相比,工艺要求和技术壁垒较低。
封装光刻机技术不断发展,新技术不断涌现。与前端区域相关。翘曲处理以及异质材料对光刻技术构成了巨大挑战。此外,一些MEMS制造设备需要精确的层层对准,步进和掩模对准器是目前大批量制造中使用的两种主要光刻技术。激光直接成像(LDI)和激光烧蚀等新的光刻技术也不断涌现。
中低端光刻机需求量不断增长,市场竞争加剧。根据Yole,2015-2020年先进封装、MEMS以及LED光刻机出货量将持续增长,预计到2020年总数将超过250台/年。中低端市场的不断增长主要受先进封装的推动,随着步进技术发展,2015年到2020年先进封装光刻设备出货量年复合增长率达到15%。MEMS光刻市场主要受益于IC前道制造光刻机的重复使用与改装。中低端光刻机市场规模的不断扩大和相对于前道制造较低的技术壁垒,竞争者数目较多,目前尼康与佳能是中低端市场两大龙头。
2.2.2.半导体产线升级为光刻设备带来更大需求
晶圆尺寸变大和制程缩小将使产线所需的设备数量加大,性能要求变高。12寸晶圆产线中所需的光刻机数量相较于8寸晶圆产线将进一步上升,先进制程的发展将进一步提升对于光刻机性能的要求。
随着产业转移和建厂潮的推动和边际需求改善,光刻设备市场将不断增长。根据Varianat Market Research,到2025年全球光刻设备市场规模估计将达到4.917亿美元; 从2017年到2025年的复合年增长率将达到为15.8%。
3、对接多元光刻机市场需求,积极开拓封装、LED和平板显示光刻机业务
3.1.1.公司前道光刻机与国际先进水平差距较大
公司IC前道光刻机技术与国际先进水平差距明显。 IC前道光刻机研发迭代周期长,耗资巨大,目前国际IC前道光刻机霸主ASML已实现7 nm EUV光刻先进工艺,而国内龙头上海微电子由于起步较晚且技术积累薄弱,目前技术节点为90 nm,且多以激光成像技术为主,客观上与国际先进水平存在较大差距。
依托国家专项公司率先实现90 nm制程,未来有望逐步实现45、28 nm。公司自2002年创立至今积极投入IC前道光刻机产品研发,公司600系列步进扫描投影光刻机采用四倍缩小倍率的投影物镜、工艺自适应调焦调平技术,及高速高精的自减振六自由度工件台掩模台技术,可满足IC前道制造90nm、110nm、280nm光刻工艺需求,适用于8、12寸线的大规模工业生产。目前公司90nm 制程的IC前道光刻机样机已通过专家组现场测试, 而90 nm为光刻机的一个技术台阶,迈过 90 nm这一台阶就很容易实现 65 nm,再对 65 nm升级就可以实现 45 nm制程。在国家重大科技专项的支持下,上海微电子的IC前道光刻机有望在未来几年实现 45 nm、28 nm制程,逐步缩小与国际先进水平的差距。
3.1.2.公司封装光刻机技术先进,未来将依托于广阔市场不断发展
SIP封装市场快速发展,公司封装光刻机市场空间广阔。 SIP封装(System In a Package系统级封装)将一个或多个IC芯片及被动器件整合到同一封装中,成为了IC封装领域最高端的一种先进封装技术。在电子设备小型化、5G、IOT和市场周期变短等的多重因子推动下,SIP市场规模迅速扩张,2016年全球系统级封装市场规模为54.4亿美元,预计到2023年有望达90.7亿美元,2016-2023年复合增长率达7.58%,SIP先进封装市场保持快速发展。
公司封装光刻机满足各类先进封装工艺需求,国内及全球市占率分别达80%和40%。全球SIP需在不同芯片或器件间打通电流通路,节点不能过于精细,否则焦深不足将无法穿透,公司主打的500系列IC后道封装光刻机正好满足这一要求。公司500系列封装光刻机国内领先,关键指标达到或接近国际先进水平,具备超大视场,高产率生产、支持翘曲片键合片曝光、高精度套刻及温控、多种双面对准和红外可见光测量等特征,可以满足各类先进封装工艺的需求。公司封装光刻机已实现批量供货,公司已成为长电科技、日月光半导体、通富微电等封测龙头企业的重要供应商,并出口海外市场,国内市场占有率高达80%,全球市场占有率达40%。
国内LED市场快速扩张,推动LED光刻机需求增长。随着LED行业产能逐渐向中国转移,中国LED市场规模快速增长,从2011年的1545亿元增长至2017年LED市场规模达到5509亿元,复合年增长率达23.6%,且LED行业趋势转好,市场规模增长率连续七年超10%。国内快速扩张的LED市场规模,将进一步推动国内LED光刻机需求。
公司LED/MEMS/功率器件光刻机性能指标领先,LED光刻机市占率第一。公司300系列步进投影光刻机面向6英寸以下中小基底先进光刻应用领域,具备高分辨率(0.8um)、高速在线Mapping、高精度拼接及套刻、多尺寸基底自适应、完美匹配Aligner和高产能等特征,满足HB-LED、MEMS和Power Devices等领域单双面光刻工艺需求,公司LED光刻机各项性能指标占据市场领先地位,其中用于LED 制造的投影光刻机市场占有率第一。
国内FPD产业处于高速发展阶段,市场发展空间巨大。随着国内FPD生产线的建设和陆续投产及下游电子设备应用多元化发展,我国FPD产业步入快速发展时期,产能持续增长。据商务部数据显示,2013年国内FPD产能仅为22百万平方米,而2017年国内产能迅速增长到96百万平方米,2013-2017年成长率高达336.36%,预计2020年我国FPD产能将达到194百万平方米,2013-2020年复合增长率达36.48%,FPD市场保持高速增长,发展空间巨大。
国内FPD产能全球占比持续提升,至2017年中国成为全球第二大FPD供应区。在FPD产业逐渐向中国大陆转移和中国大陆以京东方为首的FPD厂商投资力度加大的双重作用下,国内FPD产能全球占比持续提升。据商务部数据显示,2013年国内FPD产能全球占比仅为13.9%,2017年国内FPD产能全球占比上升至34%,2013-2017年增长率达144.60%,中国跃升为全球第二大FPD供应区,预计2020年国内FPD产能全球占比将提高至52%,届时中国将成为全球最大的FPD生产基地。
尼康、佳能FPD光刻技术优势明显,基本垄断了FPD光刻机市场。目前尼康和佳能受ASML挤压基本已退至20亿美金规模的低端平板显示光刻机市场,但两者在FPD光刻领域具有绝对的技术优势。
尼康FPD光刻技术优势:尼康在目前全球FPD光刻系统市场中占有最高份额;尼康FPD光刻系统采用多镜头扫描方法,实现了较高的精度和生产效率;随着玻璃板每年变大,允许从它们切割更多数量的面板,有必要提高生产率,从而可以通过单次曝光来图案化更宽区域上的电路。尼康公司基于其独特的技术开发了多镜头系统来解决这一问题,为了有效曝光,尼康将多个镜头排成两排,覆盖了很大的曝光面积,最大的尼康FPD光刻系统FX -101有多达14个镜头排列成行,这些镜头被精确控制为一个巨大的镜头;目前最大的第10代玻璃板的尺寸达3.13×2.88米,尼康为这款Gen 10平板配备了尖端的FX-101S系统,能够有效地生产超过60英寸的大尺寸面板;制造高清晰度FPD需要各种技术,包括通过透镜的精确曝光,玻璃板的精确定位,玻璃板表面变形的测量和调整,尼康独立开发了这些技术并将其应用于FPD光刻系统,同时实现了高精度和高生产率;自1986年尼康在FPD制造领域推出NSR-L7501G以来,尼康开发并销售了大量的FPD光刻系统,尼康不仅是大型FPDs光刻系统的领导者,而且还为智能手机和平板电脑生产中小型高清FPDs提供理想的型号;
佳能FPD光刻技术优势:由于弧形的成像范围使得获得最佳成像特性成为可能,佳能的设备可以扫描弧形的曝光区域,从而在大面积范围内获得高分辨率的性能;通过同时使用AS和OAS方法来观察失真,佳能的混合对准系统可以进一步提高检测时间和更精确的测量;为了解决之前曝光过程中产生的模式失真,佳能的高精度速度平台对扫描速度和方向进行了微调,在曝光过程中修正光刻板上的掩模图形;利用非线性失真校正技术结合扫描校正机制,可以处理衬底上各种形状的变形,并更准确地将其与掩模上的图案对齐。
公司积极参与FPD光刻机市场竞争,实现首台4.5代TFT投影光刻机进入用户生产线。公司200系列投影光刻机采用先进的投影光刻机平台技术,专用于AM-OLED和LCD显示屏TFT电路制造,具备高精度(1.5um)、支持小Mask(6英寸)降低用户使用成本和智能化校准及诊断特征,可应用于2.5代~6代的TFT显示屏量产线。目前市场主流的OLED量产机型为6代,研发机型为2.5或4.5代,由于尼康及佳能不提供6代以下机型,公司6代以下机型全球领先。
注:如有遗漏错误之处请指正,联系方式如下:
投稿邮箱:ittbank@ittbank.com
ITTBANK客服热线:25839333
声明:转载请注明来源!